A Note on Discrete Element Method (DEM)

Tianju Xue

December 8, 2022

1 Governing equations

The equations of motion for a single 3D rigid object can be written as the following ODEs:

$$
\begin{align*}
\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t} & =\boldsymbol{v} \tag{1a}\\
\frac{\mathrm{d} \boldsymbol{q}}{\mathrm{~d} t} & =\frac{1}{2} \boldsymbol{\omega} \otimes \boldsymbol{q} \tag{1b}\\
\frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} & =\frac{1}{m} \boldsymbol{f} \tag{1c}\\
\frac{\mathrm{~d} \boldsymbol{\omega}}{\mathrm{~d} t} & =\boldsymbol{I}^{-1}(\boldsymbol{\tau}-\boldsymbol{\omega} \times(\boldsymbol{I} \boldsymbol{\omega})), \tag{1d}
\end{align*}
$$

where $\boldsymbol{x} \in \mathbb{R}^{3}$ is the Cartesian position of the centroid, $\boldsymbol{q} \in \mathbb{R}^{4}$ is the quaternion that describes the rotational position of the object, $\boldsymbol{v} \in \mathbb{R}^{3}$ is the velocity of the centroid, $\boldsymbol{\omega} \in \mathbb{R}^{3}$ is the angular velocity of the object, $\boldsymbol{f} \in \mathbb{R}^{3}$ is the net force on the object, $\boldsymbol{\tau} \in \mathbb{R}^{3}$ is the net torque, m is the mass, and $\boldsymbol{I} \in \mathbb{R}^{3 \times 3}$ is the inertia tensor with respect to the centroid. Here, Eq. 1a is obvious, Eq. 1b is the quaternion description of rotational kinetics [1, 2], Eq. 1c is Newton's law, and Eq. 1d is Euler's equation for rigid body dynamics [3]. These are the standard equations for rigid body dynamics. One can also consult any typical DEM literature for details, like [4].

The equations for a single object cannot stand alone to be solved, because for example \boldsymbol{f} may depend on the position of another object. For a systematic treatment, let us assume we have n objects. Denote $\boldsymbol{u} \in \mathbb{R}^{13 \times n}$ to be the state variable such that

$$
\boldsymbol{u}=\left[\begin{array}{cccc}
\boldsymbol{x}^{1} & \boldsymbol{x}^{2} & & \boldsymbol{x}^{n} \tag{2}\\
\boldsymbol{q}^{1} & \boldsymbol{q}^{2} & \ldots & \boldsymbol{q}^{n} \\
\boldsymbol{v}^{1} & \boldsymbol{v}^{2} & & \boldsymbol{v}^{n} \\
\boldsymbol{\omega}^{1} & \boldsymbol{\omega}^{2} & & \boldsymbol{\omega}^{n}
\end{array}\right],
$$

where the $i^{\text {th }}$ column of \boldsymbol{u} is the state vector for the $i^{\text {th }}$ object. Therefore the system of ODEs for all objects can be abstracted as

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{u}}{\mathrm{~d} t}=\boldsymbol{r}(\boldsymbol{u}) \tag{3}
\end{equation*}
$$

where $\boldsymbol{r}: \mathbb{R}^{13 \times n} \rightarrow \mathbb{R}^{13 \times n}$ is the right hand side function.

2 Shape representation

The formulation above does not consider the shape of the object as a variable. Let's add the dependency now. There are various ways to parametrize an irregular 3D object, such as levelset method [5], parametric surface [6], overlapping rigid cluster method [7], point cloud based
method [4], and polyhedron method [8]. It is also promising to use a neural network for shape representation [9], whose application in DEM can be interesting to explore.

Denote the parameters controlling object shape to be $\boldsymbol{p} \in \mathbb{R}^{m}$. We can now write $\boldsymbol{u}=\boldsymbol{u}(t, \boldsymbol{p})$, and $\boldsymbol{r}=\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{p})$. For a process from initial time t_{0} to final time t_{f}, if we are given the shape parameter \boldsymbol{p} and the initial conditions for \boldsymbol{u}, we should be able to solve for $\boldsymbol{u}(t, \boldsymbol{p}) \in \mathcal{U}$.

3 Contact modeling

In Eq. 1, the only term that is not obvious is the force f. Typically, we need to have a robust mechanism to detect and evaluate the contact forces contained in \boldsymbol{f}. Up to now, we have generally followed the treatment in [5]. Other approaches might also apply, such as in [4]. We will see.

References

[1] https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/.
[2] https://www.euclideanspace.com/physics/kinematics/angularvelocity/ QuaternionDifferentiation2.pdf.
[3] https://en.wikipedia.org/wiki/Euler\'s_equations_(rigid_body_dynamics).
[4] L. Zhan, C. Peng, B. Zhang, and W. Wu, "A surface mesh represented discrete element method (smr-dem) for particles of arbitrary shape," Powder Technology, vol. 377, pp. 760779, 2021.
[5] R. Kawamoto, E. Andò, G. Viggiani, and J. E. Andrade, "Level set discrete element method for three-dimensional computations with triaxial case study," Journal of the Mechanics and Physics of Solids, vol. 91, pp. 1-13, 2016.
[6] J. E. Andrade, K.-W. Lim, C. F. Avila, and I. Vlahinić, "Granular element method for computational particle mechanics," Computer Methods in Applied Mechanics and Engineering, vol. 241, pp. 262-274, 2012.
[7] A. K. Ashmawy, V. V. Hoang, B. Sukumaran, et al., "Evaluating the influence of particle shape on liquefaction behavior using discrete element modeling," in The Thirteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2003.
[8] B. Nassauer, T. Liedke, and M. Kuna, "Polyhedral particles for the discrete element method," Granular matter, vol. 15, no. 1, pp. 85-93, 2013.
[9] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, "Deepsdf: Learning continuous signed distance functions for shape representation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165-174, 2019.

